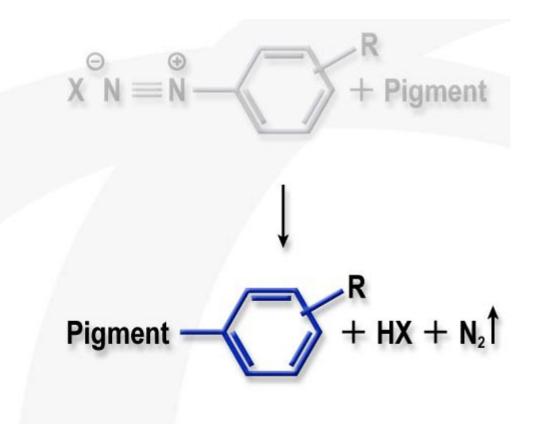
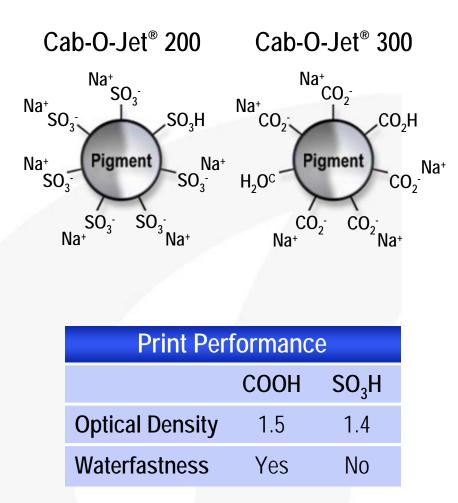
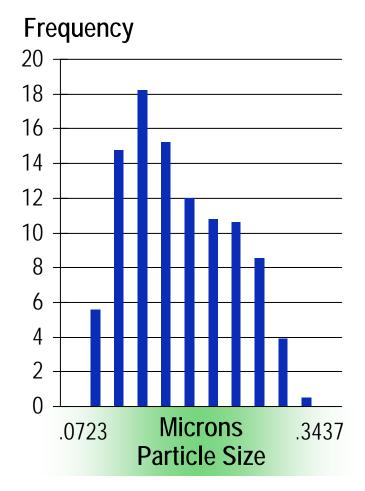

Surface Modified Color Pigments

Yuan Yu and Friedrich von GottbergDate


Outline

- Technology background
 - Diazonium Reaction
- Commercial products
- Extension to color pigments
 - Physical properties
 - Stability testing
 - Print properties
- Surface modification versatility
- Key benefits
- Summary


Surface Modification Reaction



R = COOH $= SO_{3}H$ = Polymer

Example Commercial Products

Extension to Color Pigments - Questions

- Will diazonium chemistry work on organic color pigments
- By modifying surface with solubilizing groups will one create dye
- Will surface modification alter color properties and lightfastness
- Can we create a stable color pigment dispersion
- Will the approach be versatile

Extension to Color Pigments

IJX266 — Quinacridone

IJX273 - Monoazo $OCH_3 + OCH_3 + O$

H

H

IJX253 — Cu Phthalocyanine

Physical Properties of Dispersions

8

Modified pigments with surface sodium sulfonate groups

Physical Properties	IJX™ 253C	IJX™ 266D	IJX™ 273B
Color	Cyan	Magenta	Yellow
Pigment Type	PB 15:4	PR 122	PY 74
Pigment Loading	11.7 %	10.4 %	9.2 %
Viscosity ¹	2.1 cP	2.4 cP	2 .0 cP
Surface Tension ²	70.3 dynes/cm	71.8 dynes/cm	72.0 dynes/cm
рН	6.9	7.6	6.4
Particle size ³	91 nm	105 nm	137 nm

¹Shell #2 Efflux Cup ²Kruss Digital Tensiometer K-10

³Mean volume particle size determined by Microtrac[®] Ultrafine Particle Analyzer (Honeywell)

Dispersion Purification

- Essential to remove reaction byproducts, excess salts and unreacted starting materials
- Purification is done using dialysis against DI water
 - Soluble impurities pass through membrane leaving surface modified pigment and its counterion
- Dialysis permeate does not contain solubilized dye molecules

Stability Testing

- Testing Conditions
 - Pigment dispersion at 10%
 - Generic ink with 5% pigment and 10% 2-pyrrolidone
 - Four-month aging 25°C and 70°C

Four Month Aging test of IJX[™] 253 (PB 15:4)

11

PB 15:4	Mean volume particle size (nm) ¹		Number of > 0.5	
	INITIAL	AGED	INITIAL	AGED
25°C: Pigment	92	92	2.7E+8	1.1E+8
Generic Ink	89	90	2.4E+8	1.6E+8
70°C: Pigment	92	91	2.7E+8	1.8E+8
Generic Ink	89	90	2.4E+8	1.6E+9

¹Mean volume particle size determined by Microtrac[®] Ultrafine Particle Analyzer (Honeywell) ²Determined by AccuSizer Model 780 available from Particle Sizing Systems NICOMP

Four Month Aging test of IJX[™] 266 (PR 122)

12

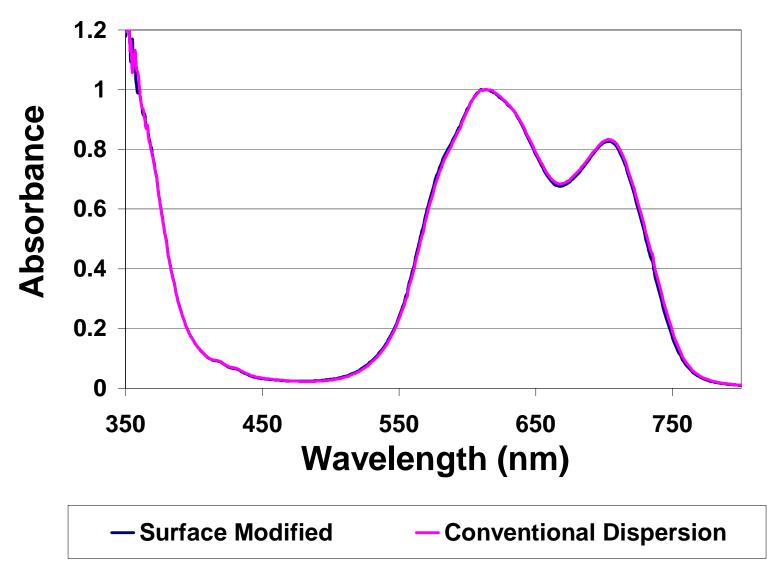
PR 122	Mean v particle s		Number of particles > 0.5 µm ²		
	INITIAL	AGED	INITIAL	AGED	
25°C: Pigment	110	106	3.8E+8	1.4E+8	
Generic Ink	105	106	4.0E+8	1.4E+8	
70°C: Pigment	110	94	3.8E+8	1.5E +8	
Generic Ink	105	100	4.0E+8	1.3E+8	

¹Mean volume particle size determined by Microtrac[®] Ultrafine Particle Analyzer (Honeywell) ²Determined by AccuSizer Model 780 available from Particle Sizing Systems NICOMP

Four Month Aging test of IJX[™] 273 (PY 74)

PY 74	Mean v particle s		Number of particles > 0.5 µm ²		
	INITIAL	AGED	INITIAL	AGED	
25°C: Pigment	135	135	1.6E+8	5.8E+7	
Generic Ink	125	126	1.7E+8	1.3E+8	
70°C: Pigment	135	130	1.6E+8	1.3E +8	
Generic Ink	125	105	1.7E+8	5.0E+7	

¹Mean volume particle size determined by Microtrac[®] Ultrafine Particle Analyzer (Honeywell) ²Determined by AccuSizer Model 780 available from Particle Sizing Systems NICOMP



Impact of Surface Modification on Color

- UV-VIS absorbance
 - Comparison made at same pigment loading and same particle size
 - Compared surface modified to conventionally dispersed pigment
 - Compared nature of attached group carboxylate versus sulfonate
- Result
 - Absorbance curves can be superimposed
 - No peak shift or additional absorbance seen

UV-VIS Comparison (PB15:4)

Color Properties on Set of Plain Papers (PR122)

	Conventional	Surface Modified Pigments			
		Sulfonate		Carboxylate	Quat
		High	Low		
L*	57	55	56	53	54
a*	41	46	47	48	49
b*	-13	-12	-9	-13	-13
Chrom	na 43	47	48	50	51

Printing Performance

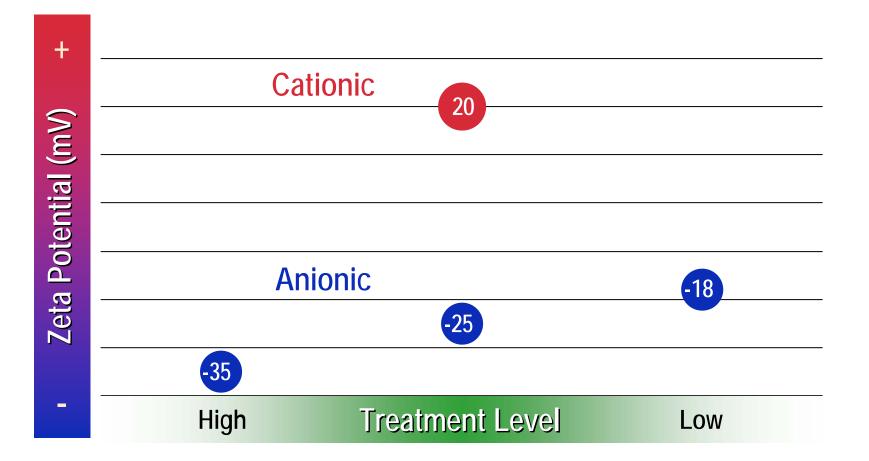
17

IJX™	Pigment	L*1	a*	b*	OD	WF ²	LF ³
253	PB 15:4	52	-18	-37	1.0	24 hrs	90%
266	PR 122	56	47	-9	1.0	5 min	93%
273	PY 74	89	-6	84	1.2	5 min	<50%

¹L*a*b* readings determined by a Hunter LabScan II

²WF: Waterfastness is time taken by print to dry sufficiently that the runoff of 2.5 ml DI water does not cause colorant transfer

³LF : lightfastness expressed as % OD retention after 400 hrs of continuous UV-A irradiation using a Accelerated Weathering QUV/SE Instrument (Q-Panel Co.)



Surface Modified Color Pigments

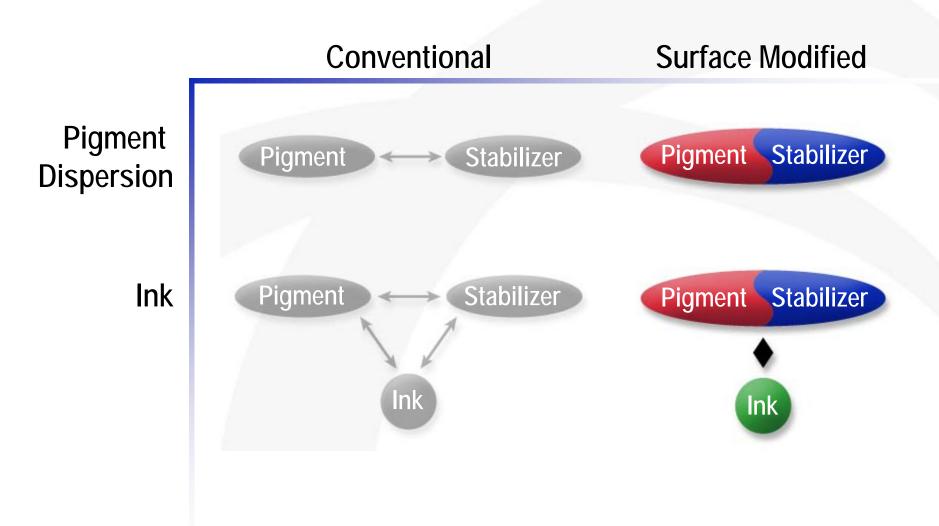
- Conclusions
 - Particle size of all pigment dispersions and inks grew less than 10% after aging
 - Number of particles greater than 0.5 µm did not change after aging
 - Color and light stability of pigment seem unaffected by surface modification
 - No dye appears to be formed by surface modification

Zeta Potential

Ion Exchange

Carboxylate sodium salt modified PB15:4

	Na⁺ (ppm)	NH ₄ + (ppm)	Waterfastness
Before Ion Exchange	6000	—	1 hour
After NH ₄ ⁺ Exchange	90	4800	10 mins



Benefits of Surface Modification

- Technology
 - Ability to tailor surface properties
- Physical Properties of Pigment Dispersions
 - High surface tension (~ 70 dynes/cm)
 - Low viscosity (< 2.5 cP at 10% solids)
 - Superior colloidal stability
 - High purity (material covalently attached)
- Ink
 - Formulation flexibility
 - No dispersants required
 - Superior reliability

Formulation Flexibility

Surface Modification Versatility

Treatment Type

- Ionic (+ and -)
- Non-ionic
- Multiple/additional treatments
- Polymers

Counterion Type

- Negative/Positive
- Organic/inorganic

R

Small molecules/polymers

Pigment Type

Pigment

Black Cyan Magenta Yellow

Treatment Level

adjusted for desired properties

Broad Applicability to Pigment Classes

- Demonstrated surface modification of
 - Metal phthalocyanines
 - Quinacridone
 - Naphthol-AS
 - Mono-azo
 - Di-azo
 - Diketopyrrolo-pyrrole
 - Carbon Black
- Not all organic pigments can be treated

25

- Cabot surface modification technology extended to organic color pigments
 - Dispersing group attached to pigment surface
 - Provides unique and valuable dispersion properties
- Ideally suited for Digital Imaging Applications

www.cabot-corp.com inkjet@cabot-corp.com